
PIDDNet: RGB-Depth Fusion Network for
Real-time Semantic Segmentation

Yunsik Shin
dept. Electrical Engineering

Hanyang University
Seoul, South Korea

ysshin@spa.hanyang.ac.kr

Yongho Son
dept. Artificial Intelligence

Hanyang University
Seoul, South Korea

yhson@spa.hanyang.ac.kr

Junghee Park
dept. Ground Control System S/W

LIG Nex1 Co. Ltd.
Seongnam, South Korea

junghee.park@lignex1.com

Chaehyun Lee
dept. Ground Control System S/W

LIG Nex1 Co. Ltd.
Seongnam, South Korea

chaehyun.lee@lignex1.com

YangGon Kim
dept. Ground Control System S/W

LIG Nex1 Co. Ltd.
Seongnam, South Korea

yanggon.kim@lignex1.com

Jun Won Choi
dept. Electrical Engineering

Hanyang University
Seoul, South Korea

junwchoi@hanyang.ac.kr

Abstract—For RGB semantic segmentation, a two-branch net-
work was proposed to effectively utilize both local detail infor-
mation and global contextual information within an RGB image.
This architecture combines a shallow spatial path with a deeper
context path, resulting in high performance and FPS. Research
on RGB-Depth segmentation has shown the performance gain
that the depth map could provide complementary information
to the RGB model. However, the advantage of fusing RGB and
depth map within a two-branch network framework is unclear
due to the distinct characteristics of these modalities. To address
this, we present a novel fusion RGB-Depth architecture that
takes into account the attributes of local context, global context,
RGB, and depth map. Through the bidirectional image depth
fusion technique, we effectively leverage each of the modalities,
achieving a performance of 81.23 mIoU. This marks a gain of
1.27% when compared to the RGB-only model and 0.45% when
contrasted with the element-wise feature addition fusion baseline.

Index Terms—Semantic Segmentation, Deep Learning, RGB-
Depth Fusion

I. INTRODUCTION

Computer vision has gained a wide range of applicability in
industries due to the advancement of deep learning technology.
In particular, within the domain of autonomous driving, active
research has been conducted on tasks such as object detection
[13]–[15], image segmentation [10]–[12], and depth estimation
[16]–[18] using cameras.

Image segmentation is a task that assigns classes for every
pixel in an image, making it more challenging than object
detection. Moreover, it needs to predict the results not only for
thing classes but also for stuff classes, requiring global context
information as well as fine-detailed information. To date,
most image segmentation models are based on FCN(Fully
Convolutional Network) [9] or Transformer backbones [5],
[8]. FCN offers the advantages of relatively low computational
complexity and high FPS (Frames per Second). Transformer-
based models are more flexible framework which has low
inductive bias, but they are hard to implement in real-time

Fig. 1. From the first to the last row, the images refer to the GT segments,
outputs from the RGB, and depth models.

applications because of the computational cost and low FPS.
Thus, it is important to develop a semantic segmentation model
that can achieve the performance of Transformer-based models
but the computation time of FCN.

Recently, RGB-Depth fusion networks that leverage depth
map information to enhance performance have gained atten-
tion. The fusion of rich color information from a camera
and depth information from a stereo disparity map could
complement each other. While the RGB segmentation models
outperform the depth segmentation models(Fig 1. left column),
they occasionally suffer from inaccuracies in some parts of
the image. On the other hand, the depth map model tends
to produce segmentation results with coarse resolution, yet
it outputs a more consistent performance for broader regions
compared to the RGB model(Fig 1. right Column).
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Fig. 2. (a) Overview of the PIDDNet. (b-c) BdirIDMixer Structure

In this paper, we propose an RGB-Depth sensor fusion
network, referred to as PIDDNet, that incorporates depth
information into the pipeline to get a robust segmentation
performance for the broad areas. The RGB and depth map are
fed into separate backbones and the fusion modules follow
to combine the output of two backbones. We evaluate the
performance of our fusion method in comparison with other
methods on Cityscapes [6]. Our proposed method achieved an
81.23 mIoU (mean Intersection over Union), which is a mIoU
gain of 1.27% over the RGB baseline model’s 79.96 mIoU.

II. RELATED WORK

A. RGB Semantic Segmentation

In the early field of image segmentation, methods using
the FCN (Fully Convolutional Network) architecture predom-
inated. The approach involved obtaining high-level features
through an encoder and predicting pixel classes through a
decoder. Additional techniques were proposed, such as di-
lated convolutions for contextual features and auxiliary losses
for learning boundary information. PSPNet [10] proposed a
pyramid pooling module based on a ResNet-based FCN. This
module enabled the effective extraction of global context,
structuring the decoder to utilize richer context features.
Deeplabv3+ [11] employed an FCN structure with atrous con-
volutions, proposing a simple yet effective feature extraction
technique for segmentation. Transformer-based models also
have been widely leveraged to retrieve informative regions of
input signals. Segformer [19] introduces a hierarchical Trans-
former encoder, which does not need additional positional
encoding and both local and global attention representations
are aggregated through a lightweight MLP decoder.

To accomplish the semantic segmentation task in real-time,
PIDNet [12] proposed three PID branches to fuse detailed,
context, and boundary information and achieved the state-of-
the-art trade-off between inference time and accuracy.

B. RGB-Depth Semantic Segmentation

The development of depth sensors has led to a recent surge
of interest in leveraging depth information for RGB-Depth se-

mantic segmentation models. Typically, the methods for com-
bining RGB and depth map are categorized into early, middle,
and late fusion. As an early-stage fusion method, ShapeConv
[1] concatenated the RGB and depth map and extracts se-
mantic information through Shape-aware Convolution layers,
which focuses on the inherent shape component in the depth
information. However, the two distinct data modalities contain
disparate features, which cannot be effectively processed via
shared network feature extractors. For the late fusion, [2] pro-
posed the geometry-aware propagation architecture to distill
depth-aware embedding in the late stage instead. The middle-
stage fusion outperforms the aforementioned methods through
the interaction between intermediate information of the two
modalities. [3] proposed a cross-modality guided encoder to
fuse the different modality feature maps and propagate them
to the next branch. This method efficiently reduces the domain
gap in the middle stage and aggregates the two recalibrated
representations. Moreover, FokenFusion [4] proposed a fusion
method of multi-modal data using Transformers [5], which
recombines the tokens in the feature tensor to strengthen the
interaction of other informative multi-model tokens. EMSANet
[7] proposed an efficient semantic segmentation network by
adopting factorized non-bottleneck blocks in convolution neu-
ral networks and operating on a mobile platform in real time.

In this literature, we mainly focus on the middle fusion
strategy to recalibrate RGB feature maps from a depth rep-
resentation, which effectively enhances the representations for
the outdoor semantic segmentation e.g., CityScapes dataset [6].

III. PROPOSED METHOD

A. Baseline Backbone Structure

Our PIDDNet builds on the baseline semantic segmentation
model, PIDNet [12]. PIDNet [12] proposed a three-branch
structure inspired by the PID controller. It redefined the
existing two-branch network architectures into the P, and I
branches, then introduced a new D branch. The P branch
extracts fine-detailed information from the images, while the I
branch takes charge of semantic information spanning across
the entire image. By incorporating the D branch, PIDNet [12]

1050



TABLE I
CITYSCAPES RESULTS ON VALIDATION DATASET.

LA: LINEAR ADDITION, SA: SPATIAL ATTENTION, BA: BIDIRECTIONAL ADDITION
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RGB 98.2 85.9 93.2 56.9 66.6 67.4 73.9 81.6 92.7 64.8 94.8 83.8 68.0 95.6 80.7 90.0 78.5 66.8 79.4 79.96 -

Depth 96.8 74.2 83.7 30.3 43.4 48.6 41.3 47.1 80.4 42.0 83.8 65.0 46.4 88.5 49.1 58.9 49.8 27.6 50.5 58.29 -

RGB-D (EWA) 98.1 85.0 93.4 56.9 70.7 68.5 74.3 81.9 92.7 64.8 95.2 84.6 69.2 95.8 83.1 89.7 82.1 68.8 79.9 80.78 16.84

RGB-D (SA) 98.3 86.4 93.3 54.3 68.3 67.3 74.7 81.8 92.6 63.8 95.1 84.6 69.5 96.0 88.9 92.3 84.7 71.4 79.6 81.21 14.43

RGB-D (BA) 98.4 86.3 93.5 61.1 68.4 67.5 74.4 81.2 92.8 64.9 95.1 84.7 69.6 95.7 83.6 92.2 85.7 68.6 79.6 81.23 16.32

enhanced the model capacity for representing high-frequency
features. This approach also facilitates real-time operation as
well as strong segmentation performance.

B. PIDDNet

We propose PIDDNet, which extends PIDNet [12] to in-
corporate not only RGB images but also disparity depth map
information. An overview of the model is shown in Fig 2 (a).
The RGB image and the depth map are fed to the separate
PIDNet-based backbones. Each modality input passes through
the P, I, D three branches. Fig 2 (a) selectively visualizes one
of the P, I, or D branch pipelines included in the two distinctive
backbones. Then, the depth and RGB features are fused in the
BDirIDMixer (Bidirectional Image Depth Mixer).

C. Bidirectional Image Depth Mixer

The three branches of PIDNet [12] are implemented for
different purposes. The P branch is expected to learn fine-
grained visual information. The I branch learns global and
local contextual information, leading to richer information
in the Depth I branch. To validate this, we compare three
separately trained fusion methods in Table 1. Element Wise
Addition (EWA) is a naı̈ve approach that adds depth feature
to RGB feature in an element-wise manner. Spatial Atten-
tion(SA) generates the attention weights for the depth map and
updates the depth feature. Then, the updated depth features are
fused with the RGB features in an element-wise manner. The
bidirectional addition(BA) operates differently for the P and I
branches as follows. For the P branches in the image backbone
and depth backbone, the image feature map is added to the
depth feature in an element-wise manner. In contrast, in the I
branch pairs, depth features are added to the RGB features(Fig
2 (b,c)). This way of fusion method in the BDirIDMixer
effectively transfers the fine-detailed and global contextual
information to both backbones.

IV. EXPERIMENTS

A. Dataset and Training Details

Cityscapes dataset [6] is well-known urban scene parsing
data, encompassing 5000 images from 27 cities. There are
2975 images for training, 500 for validation, and 1525 for
testing. The image resolution is 2048×1024 and pixel-level

labels of 19 semantic classes (11 “stuff” and 8 “thing”) are
provided.

Since we propose a fusion method into the baseline model
architecture, we follow the proposed training details in PIDNet
[12]. Cross-entropy loss and boundary-awareness CE loss are
utilized at the decoder head. Additionally, auxiliary cross-
entropy losses for the P and D backbones are adopted for
better optimization.

B. Experiment Result

Table 1 compares the performance of three different types
of models. The RGB-only and Depth-only models are trained
in the same manners proposed in PIDNet [12]. The results
for the two models are presented in the first and second
rows, respectively in Table 1. From the third to the fifth row,
the experimental results of the three fusion methods are in
the table. It is evident that using the proposed bidirectional
addition technique yielded the highest performance compared
to the other fusion methods. With Bidirectional Addition (BA)
fusion method, a performance gain of 1.27 mIoU (mean
Intersection over Union) was achieved compared to the RGB-
only model. When compared to the SA method, the BA
method shows similar performance while exhibiting a 13%
higher FPS, highlighting its computational efficiency.

C. Qualitative Result

We present qualitative results of our method on the
CityScapes dataset [6] to demonstrate how our fusion method
could improve semantic segmentation in various ways. From
scene 1, we can observe that part of the bicycle is misidentified
as a ‘car’ in the RGB model. Moreover, the pole occluded by
cars was not identified from the RGB model but has been
correctly identified with the RGB-D input. From scene 2,
we can observe that semantic segmentation performance for
vegetation intermingled with road area is more accurate with
the RGB-D model. The bidirectional fusion method effectively
delivers detailed information and also provides informative
representations of expansive areas.

V. CONCLUSION

This paper presents the novel bidirectional fusion method.
We extended the RGB segmentation model [12] to a sensor
fusion model and introduced a new fusion method. Through
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Fig. 3. From the first to the last row, the images refer to the outputs from
baseline(RGB), outputs from ours, and ground truth.

the Bidirectional Addition method, which effectively con-
veys local and global contextual information compared to
traditional methods, the proposed PIDDNet achieves better
performance and computation time than the counterpart fusion
methods.
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